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Abstract

A wide variety of effect size indices have been proposed for quantifying the magnitude of

treatment effects in single-case designs. Commonly used measures include parametric

indices such as the standardized mean difference, as well as non-overlap measures such as

the percentage of non-overlapping data, improvement rate difference, and non-overlap of all

pairs. Currently, little is known about the properties of these indices when applied to

behavioral data collected by systematic direct observation, even though systematic direct

observation is the most common method for outcome measurement in single-case research.

This study uses Monte Carlo simulation to investigate the properties of several widely used

single-case effect size measures when applied to systematic direct observation data. Results

indicate that the magnitude of the non-overlap measures and of the standardized mean

difference can be strongly influenced by procedural details of the study’s design, which is a

significant limitation to using these indices as effect sizes for meta-analysis of single-case

designs. A less widely used parametric index, the log-response ratio, has the advantage of

being insensitive to sample size and observation session length, although its magnitude is

influenced by the use of partial interval recording.

Keywords: effect sizes; meta-analysis; single-case research; non-overlap; behavioral

observation; alternating renewal process
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Procedural sensitivities of effect sizes for single-case designs with directly observed

behavioral outcome measures

Introduction

Single-case designs (SCDs) are a class of research methods used to evaluate the

effects of interventions on individuals. SCDs are defined by the use of repeated

measurements of an outcome over time, under distinct treatment conditions or phases, for

one or more individual cases. The treatment conditions are deliberately introduced (and, in

some designs, removed and re-introduced) by the investigator. Changes in the pattern of

outcomes during the phases when the intervention is present compared to when it is absent

are taken as evidence that the intervention has a causal effect for that individual. In the

logic of single-case research, systematic evidence for an effect accumulates through

replication of the pattern at several points in time, across individuals, settings, or target

outcomes (Horner et al., 2005).

SCDs comprise a large and important part of the research base in certain areas of

psychological and educational research.1 For example, in a recent, comprehensive review of

focused intervention practices for children with autism, 89% of the 456 identified studies

used SCDs (Wong et al., 2015). In the field of school psychology, recent systematic reviews

on the effects of positive behavioral interventions for reducing challenging behavior among

young children and students included predominantly single-case research (e.g., Conroy,

Dunlap, Clarke, & Alter, 2005; Maggin, Zurheide, Pickett, & Baillie, 2015). In the field of

neuropsychological rehabilitation, Tate, Perdices, McDonald, Togher, and Rosenkoetter

(2014) reported that single-case designs comprised over 30% of the research base on
1Similar individualized studies with repeated measures are also used in certain areas of medicine and

health sciences, where they are often known as n-of-1 trials (Duan, Kravitz, & Schmid, 2013; Gabler, Duan,

Vohra, & Kravitz, 2011). Although they share common design elements with SCDs, n-of-1 trials are used

in distinct contexts, are likely to use more sophisticated, high-resolution outcome measurement procedures,

and have other distinctive operational features (McDonald et al., 2017). The present investigation therefore

limits consideration SCDs as used in psychology and education.
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non-pharmacological treatments for acquired brain injury. In light of the size and breadth

of the research base in such areas, there is a clear and long-recognized need for principled

methods of synthesizing data from SCDs (cf. Allison & Gorman, 1993; Gingerich, 1984).

Traditionally, researchers have drawn conclusions from SCD data based on systematic

visual assessment of graphed outcome data (Kratochwill, Levin, Horner, & Swoboda,

2014), and this remains the predominant analytic method for primary SCD studies (Smith,

2012). However, growing interest in evidence-based practice and policy-making has led to

renewed attention to methods for statistical analysis and meta-analysis of SCDs, as

complements to established visual assessment methods (e.g., Evans, Gast, Perdices, &

Manolov, 2014; Maggin & Chafouleas, 2013; Shadish, 2014a; Shadish, Rindskopf, &

Hedges, 2008). One focus of recent work has been the development of an array of effect size

indices for quantifying the magnitude of intervention effects in SCDs. Effect size indices are

the basic unit of analysis in a research synthesis—the metric on which study results are

combined and compared. It is therefore imperative for both producers and consumers of

research syntheses to understand the interpretation of effect size indices.

Procedural sensitivity

If an effect size index is to have a valid interpretation in terms of intervention effect

magnitude, it must provide a reasonable basis for comparison from one study to another

(Hedges, 2008; Lipsey & Wilson, 2001). To do so, an effect size should be relatively

insensitive to incidental features of how the study was conducted, such as sample size or

details of the outcome measurement procedures, which are likely to vary across a collection

of studies. An effect size that is instead sensitive to such procedural features can appear to

be larger (or smaller) due only to how the study was conducted, rather than because

treatment actually produced large (or small) effects. In the context of between-case

experiments, procedural insensitivity is one of the primary reasons for using standardized

mean differences, rather than t statistics or p values, to summarize and compare results

across studies. Whereas t statistics and p values are strongly influenced by sample size,
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which is likely to vary from study to study, the standardized mean difference is a function

of population parameters only, and thus more comparable across studies (Hedges, 2008).

Following similar logic, the psychometric tradition in meta-analysis emphasizes the

importance of correcting effect size estimates for “artifacts,” such as direct or indirect

range restrictions and differential reliability, in order to reduce procedural sensitivity and

improve comparability across studies that use varied procedures (Hunter & Schmidt, 2004).

Using a procedurally sensitive effect size for purposes of meta-analysis has at least

two important consequences. First, it harms the basic intepretability of the synthesis

because the metric on which results are combined or compared is not uniform. Second, to

the extent that a collection of studies includes a variety of operational procedures, using a

procedurally sensitive effect size adds extraneous variation, making it more difficult to

identify substantively meaningful moderating factors. Procedural insensitivity is thus a

basic and fundamental property of an effect size index, required if it is to be useful for

synthesizing results across multiple studies. However, insufficient attention has been paid

to whether effect sizes that are commonly used for summarizing the results of SCDs have

this property.

SCD effect sizes

A wide array of effect sizes have been proposed for use with SCDs, yet there remains

considerable disagreement regarding their merits. Some of the effect sizes, including

within-case standardized mean differences (Busk & Serlin, 1992; Gingerich, 1984),

between-case standardized mean differences (Shadish, Hedges, & Pustejovsky, 2014), and

measures based on piece-wise linear regression models (e.g., Center, Skiba, & Casey,

1985-86; Maggin, Swaminathan, et al., 2011), are based on parametric statistical models.

Most of these models are premised on the assumption that the dependent variable is

normally distributed, yet this assumption is often criticized as inappropriate for data from

SCDs (cf. Solomon, Howard, & Stein, 2015). Little previous research has examined the

performance of these effect sizes when the assumed statistical model is not correct.
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The other main family of effect sizes for single-case research are the non-overlap

measures (NOMs), which include the percentage of non-overlapping data (Scruggs,

Mastropieri, & Casto, 1987), improvement rate difference (Parker, Vannest, & Brown,

2009), and a number of others. One perceived advantage of these measures is that they are

non-parametric, in the sense that they are not based upon distributional assumptions

about the dependent variable (Parker, Vannest, & Davis, 2011). NOMs are also viewed as

being intuitively interpretable because they are defined in terms of overlap percentages and

are on a scale of 0 to 100%. In part because of these perceived advantages, the NOMs are

the most widely employed effect sizes in reviews and syntheses of single-case research

(Maggin, O’Keeffe, & Johnson, 2011). However, the fact that the NOMs are not developed

under specific assumptions about the distribution of the data makes it more difficult to

determine whether—and under what circumstances—these indices are sensitive to

procedural aspects of a study’s design. The aim of the present study is to fill this gap by

studying the characteristics of the NOMs and of parametric effect size indices using a

realistic model for direct observation of behavior.

Behavioral observation data

Behavioral measures derived from systematic direct observation are the most

common type of dependent variable in single-case research (Gast, 2010). Systematic direct

observation entails watching the behavior of a participant or participants for a specified

period of time (an observation session) and using a recording system to score the

occurrence, duration, or other features of a behavior. Single-case research emphasizes the

importance of careful operational definition of the focal behavior and collection of

inter-observer reliability data to ensure the validity of the resulting measurements (Horner

et al., 2005). A variety of different systems are used to record direct observation of

behavior, including continuous recording, momentary time sampling, frequency counting,

and partial interval recording (Ayres & Gast, 2010). Each of these procedures can be used

for shorter or longer observation sessions, and the number of observation sessions will also
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vary from study to study. Thus, if an effect size index is to provide a fair basis for

comparing SCDs that use behavioral outcomes, it should be relatively insensitive to the

researcher’s decisions about how the dependent variable is measured, as well as to decisions

about other aspects of the study’s design.

In order to study the properties of effect size indices when applied to behavioral

outcome measures, a means of simulating realistic behavioral observation data is needed. A

useful tool for doing so is the alternating renewal process, which is a statistical model for

the stream of behavior as it is perceived during an observation session (Pustejovsky &

Runyon, 2014; Rogosa & Ghandour, 1991). A key benefit of using this model is that it

mimics the physical process of observing a behavior stream and recording data as one does

so. Consequently, it provides a way to emulate several distinctive features of real, empirical

behavioral observation data.

Aim and scope

Using the alternating renewal process model, this study investigates the extent to

which several proposed effect sizes for SCDs, including six NOMs and two parametric

indices, are sensitive to procedural features of single-case studies. The procedural features

investigated include the number of observation sessions in the baseline and treatment

phases, the length of the observation sessions, and the recording system used to collect

measurements of behavior. The study focuses on these procedural features because they all

reflect basic operational decisions that must be made when designing a single-case study

and because they are likely to vary across a collection of SCDs on a common topic—or

even across cases within a single study. Other procedural features, such as the operational

definition of the focal behavior and degree of inter-observer reliability, might also be of

concern when synthesizing a collection of SCDs, but remain outside the scope of the present

investigation. I consider the implications of this scope limitation in the discussion section.

The scope of the study is also limited in two ways with respect to the effect size

indices under consideration. First, in order to isolate the basic interpretation and
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procedural sensitivity of the effect sizes, the review and subsequent simulation are limited

to effect sizes that are appropriate for data without systematic time trends. Accounting for

time trends is important in many applications. However, the extant effect size indices that

do account for time trends are all extensions of the basic, widely used effect sizes included

in this review (e.g., piece-wise linear regression models extend the within-case standardized

mean difference). Consequently, they are very likely to retain the same interpretation—and

have similar procedural sensitivities—as the indices upon which they are built.2

Second, consistent with the idiographic orientation of single-case research, the review

focuses only on effect sizes that quantify treatment effects for individual cases, considered

separately. Other recently proposed effect sizes such as between-case standardized mean

differences (Shadish et al., 2014) are measures of average effects across multiple individual

cases, designed to achieve comparability with average effect sizes from between-group

designs. Thus, they serve a distinct purpose from case-specific indices. Investigating the

procedural sensitivities of these more complex metrics would require a more elaborate

simulation model that describes both between- and within-case variation; it therefore

remains a topic for future research.

Given these scope limitations, the review includes the following NOMs: the

percentage of non-overlapping data, the percentage exceeding the median, the percentage

of all non-overlapping data, the robust improvement rate difference, the non-overlap of all

pairs, and the Tau index. Parker, Vannest, and Davis (2011) provide a more expansive

review of the NOMs, including worked examples of how to calculate each effect size based

on graphed data. The review also includes two parametric indices: the within-case

standardized mean difference and the log response ratio, an established effect size for

between-case designs that has recently been proposed for use with SCDs. Pustejovsky and

Ferron (2016) provide a more detailed discussion of both parametric measures. Taken

together, the present review includes the most well-known and widely used effect size
2Section S2 of the supplementary materials examines this point in greater detail.
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indices in single-case research, so that its findings are relevant to current practices for

conducting systematic reviews of single-case research.

The remainder of the manuscript is organized as follows. The next section reviews

several effect size indices that have been proposed for use with SCDs. The following three

sections describe, respectively, the alternating renewal process model used to simulate

behavior data, the design of the simulation study, and the simulation results. The final

section discusses limitations, implications for synthesis of single-case research, and avenues

for future research.

Calculating effect sizes for SCDs

This section describes six NOMs and two parametric indices that have been proposed

for use with SCDs. In addition to defining each measure, I note the range of possible values

and the null value for each index (i.e., the expected value when treatment has no effect), as

well as any available guidelines for characterizing effects as “small,” “medium,” or “large.”

Such benchmarks provide one way to judge whether the procedural sensitivities of the

effect sizes are consequential. Table 1 summarizes the properties of the indices under

consideration. Section S1 of the supplementary materials includes numerical examples for

all of the effect size indices described in this section.

Notation

Each of the effect size indices is defined in terms of a comparison between a single

baseline phase and a single treatment phase. Let m denote the number of observations in

the baseline phase and n denote the number of observations in the treatment phase.

Denote the outcome measurements during the baseline phase as yA1 , ..., yAm and the outcome

measurements during the treatment phase as yB1 , ..., yBn . For the NOMs, the following

definitions assume that the dependent variable is operationalized such that smaller values

correspond to more beneficial outcomes, so that decreases are desirable.3 Let I(E) denote
3For outcomes where an increase is desirable, one would first multiply the outcome by -1 and then evaluate

the specified formula for the NOM.
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Table 1

Range, null value, and benchmarks for SCD effect size indices

Index Minimum Maximum Null value Benchmarks*

PND 0% 100% 100%
m+1 50% / 70% / 90%

PEM 0% 100% 50% none

PAND 100%× max{m,n}
m+n 100% dependent on m,n none

RIRD 1
2 −min

{
m
2n ,

n
2m

}
1 dependent on m,n .5 / .7

NAP 0% 100% 50% 65% / 92%

Tau -1 1 0 .3 / .84

SMD −∞ ∞ 0 1.0 / 2.5

LRR −∞ ∞ 0 none
* The Benchmarks column reports the cut-off values between different categorical labels for characterizing

the magnitude of an effect size index. PND = percentage of non-overlapping data; PEM = percentage

exceeding the median; PAND = percentage of all non-overlapping data; RIRD = robust improvement rate

difference; NAP = non-overlap of all pairs; SMD = standardized mean difference; LRR = log response ratio.

the indicator function, which is equal to one when condition E is true and equal to zero

when E is false.

Non-overlap measures

Percentage of non-overlapping data. The percentage of non-overlapping data

(PND) was the first non-overlap measure to appear in the literature. It is defined as the

percentage of measurements in the treatment phase that are less than the lowest

measurement from the baseline phase (Scruggs et al., 1987). Mathematically,

PND = 100%× 1
n

n∑
i=1

I
(
yBi < yA(1)

)
, (1)

where yA(1) = min
{
yA1 , ..., y

A
m

}
. PND can take on values between 0 and 100%. Scruggs and

Mastropieri (1998) offered general guidelines for the interpretation of PND, suggesting that

a PND value of 90% or greater could be interpreted as indicating a “very effective”



SINGLE-CASE EFFECT SIZE SENSITIVITIES 11

intervention; a PND between 70% and 90% as indicating an “effective” one; a PND

between 50% and 70% as indicating a “questionable” effect; and a PND of less than 50% as

indicating an “ineffective” intervention (p. 224). Manolov and Solanas (2009) proposed an

extension of PND that accounts for baseline time trends.

Since it was first proposed, PND has been widely criticized (e.g., Shadish et al., 2008;

White, 1987; Wolery, Busick, Reichow, & Barton, 2010). In an analysis similar to the

simulations presented in a later section, Allison and Gorman (1994) demonstrated that the

expected value of the PND statistic is strongly influenced by the number of observations in

the baseline phase, with longer baseline phases tending to result in smaller values of PND,

even when treatment has no effect at all.4 They argued that this dependence on sample

size makes the statistic unsuitable for use as an effect size metric. Despite this and other

objections, PND remains by far the most commonly applied effect size in systematic

reviews of SCDs (Maggin, O’Keeffe, & Johnson, 2011; Scruggs & Mastropieri, 2013).

Percentage exceeding the median. To address some of the criticisms of PND,

Ma (2006) proposed an alternative that uses the median of the baseline phase (rather than

the minimum) as the basis for comparison with the treatment phase. For an outcome

where increase is desirable, the percentage exceeding the median (PEM) is defined as the

percentage of measurements in the treatment phase that exceed the median of the baseline

phase measurements. For an outcome where decrease is desirable, PEM is defined as the

percentage of treatment phase measurements that are less than the median of the baseline

phase. To account for the possibility of ties in the data, measurements in the treatment

phase that are exactly equal to the median of the baseline phase are counted as half an
4Allison and Gorman (1994) indicated that the expected null value of PND is 100% ×

(
1− 2−1/n

)
.

However, this is incorrect. When the outcome measure is continuous, the expected null value of PND is

100%/(m + 1). For discrete outcome measures, the null value of PND can be slightly different due to the

possibility of ties.
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observation. For an outcome where decrease is desirable, PEM is calculated as

PEM = 100%× 1
n

n∑
i=1

[
I
(
yBi < ỹA

)
+ 0.5I

(
yBi = ỹA

)]
, (2)

where ỹA = median
{
yA1 , ..., y

A
m

}
. Like PND, PEM ranges in principle from 0 to 100%.

Unlike PND, the expected value of PEM is stable when treatment has no effect: if the

outcomes in the treatment phase are distributed just as the outcomes in the baseline phase,

then the expected value of PEM will be 50%. To my knowledge, no guidance has been

offered regarding what constitutes a small, medium, or large value of PEM. For handling

baseline time trends, Wolery et al. (2010) proposed calculating the percentage of treatment

phase observations that exceed a split-middle trend line.

Percentage of all non-overlapping data. Parker, Hagan-Burke, and Vannest

(2007) proposed the percentage of all non-overlapping data (PAND) as another alternative

to PND. As originally described, the percentage of all non-overlapping data (PAND) is

defined as 100% minus the minimum percentage of observations that would need to be

swapped between the baseline and treatment phases so that the lowest measurement in the

baseline phase exceeds the highest measurement in the treatment phase. More recent

descriptions use a subtly different definition, defining PAND as the percentage of

observations remaining after removing (instead of swapping) the fewest possible number of

observations from either phase so that the lowest remaining point from the baseline phase

exceeds the highest remaining point from the treatment phase (Parker, Vannest, & Davis,

2011, 2014). The simulation study employs the latter definition on the assumption that it

supersedes the former.

Let yA(1), y
A
(2), ..., y

A
(m) denote the values of the baseline phase data, sorted in increasing

order, and let yB(1), y
B
(2), ..., y

B
(n) denote the values of the sorted treatment phase data. For

notational convenience, let yA(m+1) =∞ and yB(0) = −∞. Let

x = max
{

(i+ j) I
(
yA(m+1−i) > yB(j)

)}
, (3)
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where the maximum is taken over the values 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then

PAND = 100%× x/(m+ n). (4)

Unlike PND and PEM, the range of the PAND statistic is not obvious. If there is complete

separation between phases, then PAND will equal 100%. However, the minimum possible

value of PAND is not 0 (as might be expected), but rather 100%×max{m,n}/(m+ n),

the number of observations in the longer of the two phases, divided by the total number of

observations.5 Although Parker et al. (2007) indicated that 50% is the expected value of

PAND when the intervention has no effect on the outcome, this cannot be the case

because, when m is not equal to n, the minimum possible value is larger than 50%. Parker

and colleagues (Parker et al., 2007; Parker, Vannest, & Davis, 2011) reported the empirical

distribution of PAND effect sizes based on large samples of published SCDs, but did not

offer any interpretation guidelines.

Robust improvement rate difference. Parker et al. (2009) described the “robust

improvement rate difference” (RIRD), which is equivalent to the robust phi coefficient

corresponding to a 2× 2 table arrangement of the numbers obtained in calculating PAND

(Parker, Vannest, & Davis, 2011). With x defined as in Equation (3), RIRD is calculated as

RIRD = n− x/2
n

− x/2
m

. (5)

RIRD is a linear re-scaling of PAND, such that

RIRD = 1
2mn

[
(m+ n)2 PAND

100% −m2 − n2
]
.

The range of RIRD therefore depends on the ratio of m to n. As with PAND, the expected

value of RIRD when the intervention has no effect on the outcome is unclear; the
5Consider the case where the maximum of the baseline phase is less than the minimum of the treatment

phase. To obtain no overlap, one must either remove all baseline observations or all treatment observations;

thus, the minimum number of observations that must be removed is equal to the number of observations

in the shorter of the two phases, and the number of observations remaining is equal to the number of

observations in the longer phase.
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simulation results presented in a later section indicate that the null value actually depends

on the number of observations in each phase. Based on a comparison between RIRD values

and expert visual assessments, Parker et al. (2009, p. 147) provided tentative benchmarks

for RIRD, suggesting that values below .50 correspond to “questionable” effects, values

between .50 and .70 correspond to “medium” effects, and values above .70 correspond to

“large” effects.

Non-overlap of all pairs. Parker and Vannest (2009) proposed the non-overlap of

all pairs (NAP) statistic, which involves pairwise comparisons between each point in the

treatment phase and each point in the baseline phase. NAP is defined as the percentage of

all such pairwise comparisons where the measurement from the treatment phase is less

than the measurement from the baseline phase, with pairs of data points that are exactly

tied being given a weight of 0.5. Mathematically,

NAP = 100%× 1
mn

m∑
i=1

n∑
j=1

[
I
(
yBj < yAi

)
+ 0.5I

(
yBj = yAi

)]
. (6)

NAP can take on values between 0 and 100% and has a stable null value of 50%.

Parker and Vannest (2009) argued that NAP has several advantages over other

non-overlap measures, including ease of calculation, better discrimination among effects in

published SCDs, and the availability of valid confidence intervals. As they also noted, NAP

has been proposed as an effect size index (under a variety of different names) in many

other areas of application (e.g., Vargha & Delaney, 2000). Based on visual assessment of a

corpus of SCD studies, Parker and Vannest (2009) characterized NAP values of less than

65% as “weak,” values between 66% and 92% as “medium,” and values between 93% and

100% as “large” (p. 364). Other empirical studies have suggested alternative cut-offs

(Petersen-Brown, Karich, & Symons, 2012; Solomon et al., 2015).

Tau. Parker, Vannest, Davis, and Sauber (2011) described the Tau effect size,

which is closely related to NAP but can be extended to handle time trends in the baseline

and treatment phases. Without adjustment for time trends, Tau is simply a linear
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re-scaling of NAP to have a range of -1 to 1:

Tau = 2× NAP
100% − 1. (7)

Tau has an expected value of 0 when treatment has no effect on the outcome. Benchmark

values for Tau, as listed in Table 1, can be derived from the benchmarks for NAP proposed

by Parker and Vannest (2009) based on the algebraic relationship between the indices.

Because NAP and Tau are so closely related, the simulation study focuses on the former

measure only. Parker, Vannest, Davis, and Sauber (2011) and Tarlow (2017) proposed

different extensions to Tau that account for time trends.

Parametric measures

Standardized mean difference. The standardized mean difference (SMD) is a

widely used effect size measure for synthesis of between-case experimental designs. In a

study of two independent groups, the SMD parameter is defined as the difference in

population means, scaled by the standard deviation of the outcome, which is typically

assumed to be constant across groups (Borenstein, 2009). Gingerich (1984) proposed to use

a version of the standardized mean difference, defined in terms of within-case variation, for

quantifying effect sizes in SCDs. Let ȳA and ȳB denote the sample means of the baseline

and treatment phases, respectively, and let s2
A and s2

B denote the sample variances of the

baseline and treatment phases. Gingerich (1984) proposed to use

d = (ȳB − ȳA) /sA (8)

as an estimator of the within-case SMD (see also Busk & Serlin, 1992).

Maggin, O’Keeffe, and Johnson (2011) reported that the within-case SMD was the

second most frequently employed effect size in meta-analyses of single-case research on

students with disabilities. Harrington and Velicer (2015) applied the within-case SMD to a

corpus of single-case studies published in the Journal of Applied Behavior Analysis in 2010.

Based on the distribution of observed effect size estimates, they proposed that d statistics
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between 0 and 1 could be characterized as “small,” between 1 and 2.5 as “medium,” and

greater than 2.5 as “large.” Maggin, Swaminathan, et al. (2011) described an extension of

the within-case SMD that uses a piece-wise linear regression model to account for time

trends.

The within-case d estimator has a small-sample bias that makes its magnitude

sensitive to the length of the baseline phase. The simulation study reported in a later

section therefore examines a bias-corrected SMD estimator, calculated as

g =
(

1− 3
4nA − 5

)(
ȳB − ȳA
sA

)
(9)

(cf. Hedges, 1981). This multiplicative correction factor is expected to remove the

small-sample bias of d, thereby reducing its procedural sensitivity.

Log response ratio. The log response ratio (LRR) effect size index quantifies the

magnitude of treatment effects in terms of proportionate change in the level of an outcome.

Its use is well-established in certain domains of between-groups research (e.g., Hedges,

Gurevitch, & Curtis, 1999). Pustejovsky (2015) proposed the LRR as an effect size

measure for SCDs with behavioral outcome measures. Letting µA and µB be the average

levels of the outcome in the baseline and treatment phases, respectively, the LRR

parameter is defined as λ = ln (µB/µA), where ln() denotes the natural logarithm function.

Because the LRR parameter is a function of the means within each phase, its magnitude

captures changes in levels only (i.e., basic effects), rather than other features of the data

that might be considered in visual analysis, such as changes in variability.

Because the LRR quantifies change in proportionate terms, it can be interpreted by

converting it into a percentage change in the outcome from baseline to intervention, using

the formula: % Change = 100%×
(
eλ − 1

)
(Pustejovsky, 2015). Campbell and Herzinger

(2010) argued that proportionate change measures of effect size are intuitively appealing

because applied researchers and clinicians commonly conceptualize and discuss treatment

impacts in such terms. Furthermore, percentage change measures that are conceptually

similar to the LRR have occasionally been used in syntheses SCDs, under the names of the
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suppression index (Marquis et al., 2000) or the mean baseline reduction (Campbell, 2003).

For outcomes that are quantified as proportions (or percentages), the magnitude of

the LRR depends on the direction of therapeutic improvement. When calculating the LRR

for a set of several studies, the analyst must therefore ensure that outcome measures are all

defined using a consistent direction of therapeutic improvement, so as to avoid introducing

procedural sensitivity.6 With outcomes that are defined in a consistent direction, a basic

moment estimator of the LRR can be calculated as

R1 = ln (ȳB)− ln (ȳA) . (10)

Like the within-case d index, this basic moment estimator has a small-sample bias that will

make its magnitude sensitive to the number of observations in each phase. A bias-corrected

estimator of the LRR is given by

R2 = ln (ȳB) + s2
B

2nB ȳ2
B

− ln
(
ȳA
)
− s2

A

2nAȳ2
A

. (11)

(Pustejovsky, 2015).7 The simulation study examines the performance of both estimators.

The alternating renewal process model

To study the properties of the NOM and parametric effect sizes when applied to

behavioral observation data, a statistical model is needed that is flexible enough to capture

the relationships between the procedures used to measure a behavior (i.e., observation

session length, choice of recording system) and the distribution of the resulting data.

Common probability models such as the normal, binomial, or Poisson distribution are not

well-suited for modeling these relationships. The simulations described in the following
6Pustejovsky (2017) provides more detailed explanations and instructions for calculating the LRR and

estimating its sampling variance when conducting a meta-analysis of SCDs.
7In practice, the sample means must be truncated at a small value so that R1 and R2 remain defined.

In the simulation study, I truncated the sample mean for phase p = A, B at the value 1/(2knp), where k is

the total number of intervals per session. For continuous recording, k is set to the length of the observation

session in seconds.
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section therefore used a more complex—yet also more realistic and flexible—model called

the alternating renewal process.

Before explaining the details of the model, it is useful to distinguish between two

classes of behavior: state behaviors and event behaviors. State (or duration-based)

behaviors consist of episodes that each last some length of time. With such behaviors, the

researcher is typically most interested in the behavior’s prevalence, meaning the overall

proportion of time that it occurs. A continuous recording or interval recording system is

often used for measurement of state behaviors. Percentage of time on-task is a common

example of a state behavior. In contrast, event (or frequency-based) behaviors consist of

behavioral events that each have negligible duration. With such behaviors, the researcher

is typically most interested in the behavior’s incidence, meaning the overall rate of

occurrence per unit of time, and frequency counting is often used for measurement. Hitting

and biting are common examples of event behaviors. Both state behaviors and event

behaviors can be simulated using the alternating renewal process model.

The alternating renewal process model simulates behavioral observation data using a

two-step process. The first step is to simulate a behavior stream for each measurement

occasion. Each behavior stream consists of episodes of behavior separated by spans of

inter-response time, emulating the pattern of behavior that an observer would actually see

during the course of an observation session. The duration of each behavioral episode is

generated randomly, according to a certain probability distribution (e.g., an exponential

distribution); similarly, the length of each inter-response time is generated randomly,

according to a different probability distribution. The process of alternately generating

behavioral episode durations and inter-response times is repeated until their cumulative

sum meets or exceeds the length of the observation session.

The second step is to calculate a summary measurement for each of the simulated

behavior streams, based on the rules of a specific recording system. This process mimics

the steps that an observer follows as they record data during a session and then calculate a
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summary of that data. Each recording system is modeled using a different set of rules. For

frequency counting, the summary measurement is the total number of episodes of behavior

during the session. For continuous recording, the summary measurement is percentage

duration, calculated as 100% times the sum of all the episode durations, divided by the

total session length. For interval recording systems such as momentary time sampling

(MTS) or partial interval recording (PIR), the observation session is divided up into short

intervals of time, each of a specified length (e.g., 15 seconds). Each interval is scored

according to a set of rules for determining whether the behavior is present. In MTS, the

behavior is scored as present if is occurring at the very end of the interval; in PIR, the

behavior is scored as present if it occurs at any point during the interval. With both

interval systems, a summary measurement is calculated as the percentage of intervals

where the behavior was present. Pustejovsky and Runyon (2014) provide further details

about the recording systems and summary measurements, as well as examples of simulated

behavior streams.

Simulation design

Using the alternating renewal process model, I conducted a simulation study to

examine the extent to which SCD effect size indices are sensitive to procedural features of

behavioral observation data, which are likely to vary across a collection of SCDs to be

synthesized. The simulations reported in the following section focus on state behaviors,

where the behavior’s prevalence is the primary characteristic of interest. Another

simulation study focusing on event behaviors is reported in the supplementary materials.8

Both simulation studies involved generating data from a single pair of phases within

an SCD, where the expected value of the outcome (i.e., the average level of behavior) was

stationary within each phase but could change between phases. This pair of phases might

represent the baseline and treatment phases for a case within a multiple baseline design, or
8The simulation of state behaviors is presented in the main text because it is larger, involving seven

different recording systems, whereas the event behavior simulation involves only four recording systems.
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different conditions in an alternating treatment design. It might also represent one pair of

phases within a treatment reversal (ABAB) design that includes several further phase

contrasts. Although designs that include multiple pairs of phases are important in practice,

the simulations focus on this simplified scenario for two reasons. First, all of the existing

effect size indices are defined in terms of a single phase pair, and so following the same

structure in the simulations provides the clearest way to evaluate the effect sizes as

originally defined. Second, calculating effect sizes from SCDs multiple phase contrasts

involves averaging effect sizes calculated from single pairs of phases, and so effect sizes

calculated from more complicated designs will share the same procedural sensitivities as

those calculated from the simpler design considered here.9 Similarly, the simulation used a

data-generating model without systematic time trends because this is a common

assumption of all the indices under consideration. In summary, simulating single

phase-pairs without time trends provided the simplest and most direct means of evaluating

the procedural sensitivities of the indices as defined, under the conditions for which they

were designed.

Data-generating model

The simulation used the alternating renewal process model to generate realistic

measurements of a state behavior, in the context of a single phase-pair within an SCD

study. Several further details had to be specified in order to fully operationalize the

alternating renewal process model. Although prevalence is the main characteristic of a

state behavior, its incidence is also relevant because incidence influences the variability of

measurements of the behavior. I assumed that the behavior’s prevalence and incidence

were constant within each phase of the study, but could change between phases. The

prevalence and incidence of the behavior within a given phase determined the average
9Section S3 of the supplementary materials reviews typical approaches for calculating effect sizes from

designs with multiple phase contrasts and provides a more detailed explanation of why they will share the

same procedural sensitivities.
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episode duration and average inter-response time used to generate behavior streams. I

assumed that episode durations and inter-response times followed exponential

distributions. I selected exponential distributions purely for sake of simplicity, as they are

one-parameter, continuous distributions on the positive real line.10

I chose values for the behavioral parameters to represent a range of realistic

conditions. I set the prevalence of the behavior during the baseline phase to 20%, 50%, or

80% in order to capture a range of different types of behavior, such as mild, moderate, or

severe problem behavior. For incidence, Mudford, Locke, and Jeffrey (2011) reported that

SCDs published in the Journal of Applied Behavior Analysis between 1998 and 2007

displayed a median rate of responding of slightly less than once per minute, with a

maximum rate well above once per minute in almost all cases. Based on their findings, I

set the baseline incidence of the behavior to once per minute or twice per minute. Many

SCDs focus on behaviors for which a decrease is desirable; I therefore simulated data in

which the treatment reduces the prevalence and incidence of the behavior by 0%

(representing no effect of treatment), 50%, or 80% (representing a substantial decrease in

the behavior). Figure S2 in the supplementary materials displays examples of simulated

SCDs for each combination of prevalence, and incidence, and change in behavior.

Procedural factors

The simulation examined the effects of three procedural factors: recording system,

length of observation session, and number of observations in the baseline and treatment

phases. In order to test the effect size indices under realistic conditions, I selected levels for

these factors that closely resemble the procedures used in actual SCDs.

Continuous recording (CR), MTS, and PIR are the main systems for recording direct
10The event behavior simulations investigated a wider set of distributions, including both exponential

and gamma distributions. For the state behavior simulations, the theory of alternating renewal processes

(Rogosa & Ghandour, 1991) would suggest that using other distributions, such as the two-parameter gamma

distribution, may influence the degree of procedural sensitivity with respect to different partial interval

recording procedures, but would not strongly affect sensitivity to other procedural factors.
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observation of a state behavior (Ayres & Gast, 2010). Reviews of the single-case literature

indicate that all three of these procedures are used in practice (Adamson & Wachsmuth,

2014; Mudford, Taylor, & Martin, 2009). For the interval-based systems, commonly used

interval lengths are 10, 15, 20, or 30 s. The simulation therefore examined CR; MTS with

10, 20, or 30 s intervals; and PIR with 10, 20, or 30 s intervals.

Any of these recording systems may be used for longer or shorter observation

sessions. For example, in a large synthesis of SCDs examining the effect of functional

behavior assessment interventions on student problem behavior (Gage, Lewis, & Stichter,

2012), observation session lengths ranged from 5 to 60 min and 75% of cases were observed

for 20 min or less. To emulate conditions typically used in practice, the simulation

examined observations sessions lasting 5, 10, 15, or 20 min. Finally, the number of

observations per phase ranges widely in SCDs, with some phases consisting of fewer than 5

measurement occasions while others including far more. In a review of over 400 SCDs

published between 2000 and 2010, Smith (2012) found that baseline phases included an

average of 10.2 observations, with a range of 1 to 89. In a review of 112 SCDs published in

2008, Shadish and Sullivan (2011) reported that the majority of cases used initial baselines

of 5 or more observations. The simulations therefore examined designs with 5, 10, 15, or 20

sessions in the baseline phase and 5, 10, 15, or 20 sessions in the treatment phase, including

all 16 possible combinations across the two phases.

Simulation procedures and analysis

I conducted the simulation using the ARPobservation package (Pustejovsky, 2016)

for the R statistical computing environment. The computer code that implements the

simulation and full numerical results are available in the supplementary materials. The

simulation used a full factorial, 4× 4× 4× 3× 2× 7 design. Table 2 summarizes the

parameters and levels of the simulation design. For each combination of factor levels, I

simulated 2000 phase-pairs and calculated each of the effect size measures.

To analyze the simulation results, an operational definition of procedural sensitivity
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Table 2

State behavior simulation design

Parameter Levels

Prevalence 0.2, 0.5, 0.8

Incidence (per min) 1, 2

Change (% decrease) 0%, 50%, 80%

Session length (min) 5, 10, 15, 20

Sessions in the baseline phase 5, 10, 15, 20

Sessions in the treatment phase 5, 10, 15, 20

Recording system CR, MTS (10, 20, 30 s), PIR (10, 20, 30 s)
CR = continuous recording; MTS = momentary time sampling; PIR = partial interval

recording.

is needed. I operationalized procedural sensitivity as the conditional range of the expected

value of each effect size, where the range is taken across the levels of a given procedural

factor while holding all other factors constant. To understand this summary measure, it is

helpful to consider a somewhat simpler experiment in which only three factors are

manipulated. Let µfgh denote the expected value of a given effect size at a given

combination of factor levels f = 1, ..., F ; g = 1, ..., G; and h = 1, ..., H (for instance, f

might be the number of observations in the baseline phase, g the length of the observation

session, and h the combination of all other factors in the simulation). I first estimated µfgh

by taking the average of each effect size index across replications.11 I then calculated the

conditional range of the effect size index across a procedural factor f , holding constant the

other factors g and h, by taking the difference between the maximum and minimum
11Using 2000 replications yielded precise estimates of the expected values, with negligible Monte Carlo

error.
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expected value across the levels of f :

max {µ1gh, µ2gh..., µFgh} −min {µ1gh, µ2gh..., µFgh} ,

for each g = 1, ..., G and h = 1, ..., H. If the expected value of an effect size is entirely

unaffected by factor f—that is, if it is insensitive to f—then its conditional range will be

zero. Conversely, the more strongly that the magnitude of an effect size is affected by

factor f , the larger will be its conditional range. To the extent that there are interactions

among effects, the conditional range with respect to a given factor will vary depending on

the levels of the other factors. To summarize the overall sensitivity of an effect size metric

to a procedural factor f , I created violin plots representing the full distribution of

conditional range values across the levels of g and h.

In addition to summary plots, I examined the expected values of each effect size

directly for subsets of the simulation conditions as a means of understanding the exact

range of conditions under which an effect size is procedurally sensitive. These results are

presented in the form of figures that illustrate how the expected value of an effect size

varies as a function of the procedural factors in the design. For effect sizes whose expected

values are not influenced by the number of sessions in the baseline or treatment phase,

results are averaged across the levels of one or both of these factors. For clarity of

presentation, some of the figures display results for selected subsets of the conditions; in

these cases, the results presented are generally consistent with the other simulation

conditions except when otherwise noted.

In interpreting the simulation results, it is helpful to have guidelines for assessing the

extent to which an effect size is sensitive to a given procedural factor. For the NOMs,

which have finite ranges, one means of making such judgments is to compare the extent of

sensitivity to the range of possible values for the index. I characterized an effect size as

“sensitive” to a given procedural factor if that factor influenced its magnitude by at least

10% of this range. For all of the NOMs except RIRD, 10% of the range is equivalent to 10

percentage points or less; for RIRD, 10% of the range is equivalent to .15 or less. This
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approach is roughly consistent with the interpretive benchmarks that have been proposed

for some of the NOMs, in that a procedural factor that can influence the effect size by 10%

or more creates the possibility of shifting an interpretation from “weak” to “medium” or

from “medium” to “strong.” This approach is not applicable to the parametric effect sizes,

whose ranges are not bounded. Instead, I classified SMD effect sizes as “sensitive” to a

procedural factor that could influence its magnitude by 0.5, which is roughly consistent

with the interpretive guidelines proposed by Harrington and Velicer (2015). I classified

LRR effect sizes as “sensitive” to a procedural factor that produced changes in magnitude

of 0.10 or more.

Simulation results

Non-overlap measures

Figure 1 depicts the conditional range distributions for each of the NOMs with

respect to the four procedural factors in the simulation: number of sessions in the baseline

phase, number of sessions in the treatment phase, observation session length, and recording

system. Each column corresponds to a procedural factor; each row to one of the effect size

measures. Within each panel, the full distribution of conditional ranges is represented

using a violin plot, where width corresponds to relative frequency of a given value for the

conditional range; the horizontal bars within the violin plot correspond to the quintiles of

the distribution. Violin plots with substantial density at high values of the conditional

range indicate that an effect size measure is sensitive to a procedural factor under a range

of conditions. The conditional range distributions are plotted separately by the actual

percentage change in behavior in order to assess procedural sensitivity for null versus

beneficial effects. I describe results for each of the NOMs in turn.

PND. Results in the top row of Figure 1 indicate that PND is sensitive to the

number of sessions in the baseline phase, observation session length, and recording system,

but not to the number of sessions in the treatment phase. Results for a change of 0% (in

the first column of each panel) are consistent with the findings of Allison and Gorman
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Figure 1 . Conditional range distributions of the non-overlap effect size measures for each

procedural factor, by percentage change from baseline to treatment. For clarity of

illustration, the conditional range distributions for PND are truncated at 40.
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Figure 2 . Expected value of PND for varying session lengths and vary numbers of

observations in the baseline phase, when treatment leads to a 50% change and the outcome

is measured using continuous recording.

(1994), who demonstrated that, when treatment has no effect, the magnitude of PND

depends strongly on the number of sessions in the baseline phase.

When treatment produces beneficial effects, PND can become even more sensitive to

the number of sessions in the baseline phase, while also becoming sensitive to both

observation session length and recording system. Figure 2 provides a more detailed

illustration of the degree to which PND is sensitive to the number of baseline observations

and to session length, depicting the expected value of PND for a 50% change due to

treatment, where the outcome is measured using continuous recording. When prevalence is

high, PND is at or near ceiling across all of the variations in procedural factors. However,
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Figure 3 . Expected value of RIRD for varying session lengths and recording systems, when

treatment leads to a 50% change and both phases include 10 sessions. CR = continuous

recording; MTS = momentary time sampling; PIR = partial interval recording.

for lower levels of prevalence, PND is highly sensitive. For instance, when prevalence is

20% and incidence is twice per minute, the expected value ranges from 42% to 95%,

depending on session length and the number of baseline observations. By the guidelines of

Scruggs and Mastropieri (1998), the same intervention might appear to be “ineffective” or

“very effective” depending solely on features of the study’s design.

PAND and RIRD. Results for PAND and RIRD are presented in the second and

third row of Figure 1. These two measures have quite similar properties. When treatment

has no effect, the measures are sensitive to the number of sessions in both the baseline and

treatment phase. However, the degree of sensitivity decreases when treatment produces
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more beneficial effects; further details are available in the supplementary materials.

Both PAND and RIRD are sensitive to observation session length and recording

system. Figure 3 illustrates the influence of these factors on the expected value of RIRD,

focusing on the subset of results where both phases include 10 sessions and treatment leads

to a 50% reduction in behavior. It can be seen that the magnitude of RIRD is strongly

affected by observation session length and by recording system—particularly for lower

values of prevalence. For prevalence of 80%, as well as for 80% reductions in behavior (not

shown), the expected value of RIRD is somewhat constrained by ceiling levels, which

restricts the degree of sensitivity to these factors. Results for PAND are similar; further

details are available in the supplementary materials.

NAP. Conditional range distributions for NAP appear in the fourth row of Figure

1. The expected value of NAP is unaffected by the number of observations in the baseline

phase or the treatment phase. Furthermore, the expected value of NAP is always exactly

50% when treatment has no effect on the behavior, regardless of the length of the

observation sessions or the recording system used to collect outcome data. Consequently,

these factors only matter when there is a non-null change in behavior due to treatment.

For non-null changes due to treatment, NAP is sensitive to observation session length

and recording system. Figure 4 provides further detail regarding the degree of these

sensitivities, plotting the expected value of NAP when treatment leads to a 50% decrease

in behavior, for varying observation session lengths and recording systems; each panel

displays results for a different combination of prevalence and incidence during baseline.12

For some types of behavior, the magnitude of NAP is highly sensitive to the length of the

observation session and to which recording procedure is used. For instance, when baseline

prevalence is 20%, baseline incidence is twice per minute, and observation sessions are 10

min, using 30 s MTS leads to an expected value of 81% (a “medium” effect), whereas using
12When treatment leads to an 80% decrease in behavior, the expected value of NAP is at or near the

ceiling level of 100% across most conditions in the simulation.
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Figure 4 . Expected value of NAP for varying recording systems and session lengths, when

treatment leads to a 50% change in behavior. CR = continuous recording; MTS =

momentary time sampling; PIR = partial interval recording.

10 s PIR leads to an expected value of 97% (a “large” effect).

The extent to which NAP is sensitive to these procedural factors depends on the

characteristics of the behavior. When the behavior has higher baseline prevalence or

baseline incidence, NAP becomes less sensitive to observation session length and to

recording procedure. However, this reduced sensitivity is largely due to the fact that NAP

is at or near the ceiling level of 100% for all session lengths and recording systems. Thus,

for changes in behavior in the range to which it is calibrated, the expected value of NAP is

sensitive to the choice of observation session length and recording system.
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PEM. The results for PEM (row 5 of Figure 1) are very similar to those for NAP.

Like NAP, PEM is mostly unaffected by the number of observations in either phase and its

expected value is 50% when treatment has no effect on the outcome. PEM is also sensitive

to observation session length and recording procedure when the behavioral characteristics

are in the range within which PEM can discriminate. The supplementary materials provide

further details about the characteristics of PEM.

Parametric measures

Figure 5 depicts the conditional ranges for each of the parametric effect size

measures, including the basic SMD (d), the bias-corrected SMD (g), the basic LRR (R1),

and the bias-corrected LRR (R2), with respect to each of the four procedural factors. Its

construction parallels that of Figure 1.

Standardized mean difference. Results in the first row of Figure 5 indicate that

the basic SMD estimator (d) has a small-sample bias that induces sensitivity to the

number of sessions in the baseline phase. However, the bias-corrected estimator (g) is only

minorly affected by the number of sessions in each phase. The remaining discussion

therefore focuses on g; the supplementary materials provide details about d.

The second row of Figure 5 indicates that the bias-corrected SMD is mostly

unaffected by the number of baseline sessions, but does have large conditional range under

a small set of conditions. These conditions all occur when prevalence is 80% and outcomes

are recorded using 30-s PIR, which leads to measurements that are all very near ceiling

levels. Under conditions where ceiling effects are not as severe, g is largely stable with

respect to the number of observations in each phase. However, the index is strongly

influenced by observation session length and recording system when treatment has non-null

effects on behavior. To illustrate further, Figure 6 displays the expected value of g for

varying session lengths and recording systems, based on the subset of results where

treatment leads to a 50% reduction in behavior and both phases include 10 sessions. Within

each panel, it can be seen that the magnitude of g is strongly influenced by observation
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Figure 5 . Conditional range distributions of the parametric effect size measures for each

procedural factor, by percentage change from baseline to treatment. For clarity of

illustration, the conditional ranges of d and g are truncated at 2.0.
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Figure 6 . Expected value of bias-corrected SMD (g) for varying session lengths and

recording systems, when treatment leads to a 50% change in behavior and both phases

include 10 sessions. CR = continuous recording; MTS = momentary time sampling; PIR =

partial interval recording.

session length and recording system. For a given recording system, longer session lengths

lead to effects that are larger in absolute magnitude, with differences between 10 min

sessions and 20 min sessions exceed 0.5 SD under many conditions. Differences between

recording systems are also large; for example, when prevalence is 50%, incidence is once per

minute, and sessions are 10 min in length, the expected value of g varies by 0.59 depending

on whether the outcome is measured using a 10 s MTS or 10 s PIR system.

Log response ratio. Figure 5 depicts results for the basic and bias-corrected LRR

estimators in the third and fourth rows, respectively. Similar to the results for the SMD
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Figure 7 . Expected value of R2 for varying recording systems and session lengths, when

treatment leads to a 50% change in behavior and each phase includes 10 sessions. CR =

continuous recording; PIR = partial interval recording. Results for momentary time

sampling systems are omitted because they are identical to results for continuous recording.

estimators, the basic moment estimator (R1) has a small-sample bias, while the

bias-corrected estimator (R2) is only minorly influenced by the number of sessions in each

phase. The expected value of R1 is sensitive to the lengths of both the baseline phase and

the treatment phase, particularly when treatment leads to larger reductions in behavior.

Bias correction reduces this sensitivity, so that only very slight sensitivities remain under

conditions where the outcome is measured imprecisely and when the phases include few

sessions. The remaining discussion therefore focuses on R2, while the supplementary

materials provide further details about R1.
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Figure 5 indicates that—unlike any of the other effect size indices–the bias-corrected

LRR is not affected by observation session length, although it is sensitive to the choice of

recording system. To further illustrate the degree of sensitivity, Figure 7 depicts the

expected value of R2 for varying observation session lengths and recording systems, based

on the subset of results where treatment leads to a 50% decrease in behavior and each

phase includes 10 sessions. It can be seen that the expected value of R2 is not affected by

session length. Although its expected value remains stable across continuous recording and

MTS systems, R2 is biased towards zero when a PIR system is used, with longer intervals

leading to a larger bias. In summary, the bias-corrected LRR is insensitive to the number

of sessions in the baseline and treatment phases, insensitive to session length, and

insensitive to the choice of interval length for MTS recording systems or to use of

continuous recording; however, it is sensitive to the choice of interval length if the behavior

is measured using a PIR system.

Discussion

Allison and Gorman (1994) first raised concerns about the procedural sensitivity of

SCD effect size indices, demonstrating that the magnitude of PND is systematically

affected by the number of baseline observations. Building on this earlier work, this study

has examined the procedural sensitivity of an expanded selection of effect size indices,

including some recently proposed indices and other well-known indices that are commonly

used in syntheses of single-case research. A further contribution has been to examine a

broader set of procedural factors, including observation session length and recording

system, using a realistic model for systematic behavioral observation data collected in a

SCD.

Results of the state behavior simulation demonstrated that the magnitudes of all but

one of the effect size indices are influenced by arbitrary procedural details—likely selected

by the researcher on the basis of feasibility and resource availability—rather than solely by

the magnitude of change produced by an intervention. Several of the measures, including
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PND, PAND, and RIRD, are sensitive to the number of sessions in the baseline or

treatment phase. Other measures, including PEM, NAP, and the bias-corrected SMD, are

not influenced by sample size but are sensitive to the length of the observation session and

the recording system used to measure the behavior. Such procedural sensitivities represent

an important limitation for the interpretation of these indices as effect sizes—and

particularly for their use in meta-analysis—because they do not provide a fair basis for

comparison across cases or studies that differ on procedural details.

Results of the event behavior simulation (reported in the supplementary materials)

were broadly consistent with these findings. Findings from both simulations are

summarized in Table 3. The main difference in findings concerns the degree to which the

indices are sensitive to the choice of recording system. Across all effect sizes, the choice of

recording system had only slight or moderate effects on magnitude when measuring event

behaviors, whereas the choice of recording system generally had stronger effects for state

behaviors. However, this finding may be limited by the range of conditions examined in the

event behavior simulation. Other work, also based on the alternating renewal process

model, has identified conditions under which the use of partial interval recording to

measure event behavior can produce highly misleading inferences, such as concluding that

treatment reduces the incidence of an undesirable behavior when in fact it increases it

(Pustejovsky & Swan, 2015). Thus, the lack of sensitivity to recording system in the event

behavior simulation might not hold more broadly.

For both state behaviors and event behaviors, the expected value of the

bias-corrected LRR was stable across designs with varying numbers of observations in each

phase, varying observation session lengths, and some (though not all) recording systems.

This stands in contrast to the other indices and suggests that the LRR may be particularly

appropriate and useful as an effect size for SCDs that use direct observation of behavior to

measure the dependent variable. Because of its close connection with proportionate change,

the LRR may also be intuitively appealing to applied behavioral researchers and clinicians,
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Table 3

Procedural sensitivities of effect sizes for single-case designs

Number of base-

line sessions

Number of treat-

ment sessions

Observation ses-

sion length

Recording system

Behavior State Event State Event State Event State Event

PND X X - - X X X -

PAND X X X X X X X -

RIRD X X X X X X X -

NAP - - - - X X X -

PEM - - - - X X X -

SMD - - - - X X X X

LRR - - - - - - X X
“X” indicates that an effect size is sensitive to a procedural factor. PND = percentage of

non-overlapping data; PEM = percentage exceeding the median; PAND = percentage of all

non-overlapping data; RIRD = robust improvement rate difference; NAP = non-overlap of all pairs;

SMD = bias-corrected standardized mean difference; LRR = bias-corrected log response ratio.

who commonly conceptualize and discuss treatment impacts in terms of percentage change

between phases (Campbell & Herzinger, 2010; Marquis et al., 2000).

A limitation of the LRR is that it remains sensitive to the use of partial interval

recording systems of varying length. However, this may have less to do with the effect size

measure than with the PIR system itself, which systematically over-estimates the

prevalence of state behaviors, to an extent that depends both on interval length and on

other features of the behavior (Kraemer, 1979; Wirth, Slaven, & Taylor, 2014). Another

limitation of the LRR is that it does not account for time trends within the baseline or

treatment phases. Developing methods for estimating LRRs while accounting for linear or

non-linear time trends is an important goal for further research.

The present study examined the procedural sensitivity of effect size indices, while
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holding constant the true effect magnitude. A related concern is the extent to which effect

size indices can differentiate between effects vary in magnitude. Using a collection of 200

SCD series, Parker, Vannest, and Davis (2011) found that most NOMs could not

discriminate between effects at larger magnitudes. In particular, all of the NOMs classified

at least 10% of the series at ceiling levels, with PEM classifying over 50% of the series as

having complete non-overlap. I observed similar behavior in the simulation studies based

on the ARP model, in that several of the NOMs were at or near ceiling levels under some

simulation conditions, which mitigated their procedural sensitivities (for example; NAP

and PEM were always near ceiling for prevalence of 80%, incidence of of twice per minute,

and a 50% reduction in behavior; see Figures 4 and S6). While this does support to the

findings reported by Parker, Vannest, and Davis (2011), findings from the present

simulation also point towards the need to take into account procedural differences between

SCDs when investigating the correspondence between effect size indices and effects of

varying magnitude.

The problems with the NOMs identified in this analysis add to a growing body of

criticism of these measures. Researchers have criticized the NOMs because they do not

align well with visual inspection of study results (Wolery et al., 2010), although other

studies have reported moderate or strong agreement between some NOMs and visual

analysis (Parker & Vannest, 2009; Petersen-Brown et al., 2012). Others have criticized the

NOMs because they lack valid methods to quantify their sampling uncertainty (Shadish et

al., 2008), which makes it difficult to apply conventional meta-analytic techniques for

synthesis. At the same time, this analysis has demonstrated that procedural sensitivity is

also a problem with the most commonly used parametric effect size, the within-case SMD.

Of course, as a parametric effect size, the SMD and related approaches have an advantage

that the distributional assumptions on which they are premised can be assessed in a given

application. Thus, the findings of this analysis are consistent with the recognized need to

further develop statistical methods for SCD data that are appropriate for outcomes
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measured as counts or rates (e.g. Shadish, 2014b). This study also illustrates the

importance of validating any such new developments using realistic data-generating

models, such as the alternating renewal process. Furthermore, better statistical models and

a stronger understanding of the psychometric properties of the types of outcome data used

in single-case research would contribute to improved methods of synthesizing SCDs.

Limitations

The findings from this simulation study are limited in several respects. As in any

simulation study, the findings are limited by the set of conditions examined, and any of the

effect size indices may be less (or more) sensitive to operational features of the study

design for patterns of behavior and measurement procedures outside of those considered

here. More fundamentally, the findings hinge on the extent to which the alternating

renewal process model is a plausible approximation to the real-life process of behavioral

observation. Although special cases of the model have been used in a number of previous

simulation studies of behavioral observation data (see references in Pustejovsky & Runyon,

2014), relatively little empirical data is available to investigate the model’s distributional

assumptions in detail. Until such evidence can be collected, the relevance of the model

rests on its face validity, in that its formulation closely matches the physical process of

collecting behavioral observation data.

The present study is also limited in that it focused on case-level effect sizes that are

appropriate for use in the absence of time trends. Extant effect sizes that do account for

time trends are all elaborations of the basic effect size indices, based on the same

conceptualizations of treatment effect magnitude.13 Thus, it is likely that they will exhibit

procedural sensitivities that are similar to the basic indices from the same family of

models. Further simulation work is warranted to verify this prediction and to better

understand the properties and interpretation of these effect sizes. Similarly, it would be

useful to investigate the procedural sensitivities of other effect size indices and
13Section S2 of the supplementary materials explains these relationships in detail.



SINGLE-CASE EFFECT SIZE SENSITIVITIES 40

meta-analysis techniques not reviewed here, including the between-case standardized mean

difference (Shadish et al., 2014) and the multi-level meta-analysis models developed by Van

den Noortgate and Onghena (2008).

Given that this study used simulation methods, a crucial avenue of further research is

to examine the procedural sensitivities of SCD effect sizes using real data. An investigation

of the associations between the magnitude of effect sizes and the operational characteristics

of a set of real SCDs would provide an important source of empirical evidence regarding

the issues identified in the present study. Based on analysis of a single SCD, Ledford

(2015) reported preliminary evidence that use of interval-based recording systems can alter

the magnitude of the NOMs, but further research is needed, ideally using a large corpus of

data.

Finally, the scope of the simulation study was limited to four basic procedural

features of SCDs, which are likely to vary across any collection of SCDs on a common

topic. Collections of SCDs are also likely to exhibit variation in other procedural features,

such as the operational definition of the focal behavior, the degree of inter-observer

reliability achieved during direct observation, and the methods used to identify study

participants (e.g., sampling for homogeneous versus heterogeneous cases). It is possible

that the effect size indices examined in this study are sensitive to these other procedural

features, and future research should investigate the extent of these procedural sensitivities

using both simulation and empirical data. However, such investigations will likely be aided

by using effect size indices, such as the LRR, that are relatively insensitive to other

common dimensions of procedural variation (i.e., the basic features investigated this this

study). Reducing extraneous variation in some dimensions will likely make it easier to

identify other factors that explain variation in effect magnitude—whether such factors

represent operational details or substantively important constructs.
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Implications for applied research

In light of the procedural sensitivity of the NOMs and of the SMD, as well as other

criticisms that have been raised about these measures, researchers interested in comparing

or meta-analyzing evidence from SCDs with directly observed behavioral outcomes should

exercise caution in interpreting them as effect sizes. Specifically, researchers should

discontinue use of PND, PAND, and RIRD because they are all influenced by the number

of observations in the baseline and/or treatment phase—procedural details that are quite

likely to vary across cases, even within a single study (i.e., cases in a multiple baseline

design necessarily have different numbers of observations in the baseline phase).

Researchers who use the NAP, Tau, PEM, or bias-corrected SMD indices should be aware

that, although not affected by the number of sessions per phase, the magnitude of these

measures is affected by other details of the outcome measurement procedures. If a

collection of SCDs to be meta-analyzed includes many studies that measured outcomes

through direct observation, researchers should consider using the bias-corrected LRR

because it is relatively unaffected by study procedures that are likely to vary across a

collection of SCDs.

A further implication of this study is that systematic reviews of SCDs should devote

more attention to the outcome measurement procedures and study designs on which their

findings are based. In particular, systematic reviews should report details regarding the

distribution of observation session lengths, recording systems, and the number of sessions

per phase in the included studies. In addition to reporting descriptive information about

the range of procedures used, meta-analyses of SCDs should investigate whether differences

in outcome measurement procedures moderate the magnitude of effect sizes.

There is a long tradition of using non-overlap measures—and especially PND—to

characterize the results of SCDs, which has continued despite stringent methodological

critiques. Given this history, it seems likely that researchers conducting meta-analyses of

SCDs might persist in reporting the most well-known indices as part of primary studies or
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systematic reviews of single-case research. If these measures do continue to be widely

reported, readers should be aware that these effect sizes can be sensitive—sometimes highly

so—to procedural variation in study design and outcome measurement procedures. They

should not be interpreted as pure measures of treatment effect magnitude.
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